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SEMINAR CONTENT 

• Brief introduction to mode avalanching 

• Machine learning for chirping characterisation 

• Mode character correlations on NSTX 

 



BRIEF INTRODUCTION TO MODE AVALANCHING 



FAST ION LOSS VIA RESONANT INSTABILITIES 

Resonant instability 
- Fast ion distribution is peaked 

near the toroidal axis 
- Some particles resonate with the 

EM field (c.f. inverse Landau 
damping) 

- Frequency sweeping 
- Fast ion transport mechanism 
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ALFVÉNIC AVALANCHING 
Alfvén waves 
- MHD wave 
- Subject to kinetic instability 
- Compressional branch is 

analogous to acoustic wave 

[1] E.D. Fredrickson et al. 2013 NF 53 013006 

Magnetic fluctuations from NSTX [1] 

Fast ion loss correlated with drop in 
neutron rate during “avalanches” 

increase B2/2μ0  

Research questions: 
?: What causes mode avalanching? 

?: How can we stop it? 



MACHINE LEARNING FOR MODE 
CHARACTERISATION 



MACHINE LEARNING FOR FUSION APPLICATIONS  

• Vast increase in speed for certain tasks 

• Data analysis can be done faster 

• Computational predictions can be extracted faster 

• May prove vital for operational performance of a tokamak 

• Can we train an AI to recognise and characterise 
chirping? 

• Potentially feed into overall control system 

• Knowledge of correlations between plasma parameters 
and mode character is key 

• i.e. turbulent suppression of mode chirping [3,4] 

 

[2] E. D. Fredrickson et al. 2014 NF 54, 093007 
[3] V. N. Duarte et al. 2017 NF 57, 054001 
[4] B. J. Q. Woods et al. 2018 NF 58, 082015 

only 2 parameters 

very time consuming to produce 

[2] 



MODE CHARACTER CATEGORIES 

Noise/quiescence Fixed frequency 

Chirping Avalanching 

(Shots 127109, 134851) 



DECISION TREE CLASSIFICATION 

• Human classification can be broadly considered 
as a flowchart, or decision tree 

• The maximum depth of the tree is the maximum 
number of decisions 
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DECISION TREE CLASSIFICATION 

• In principle, there is a free choice of 
decision tree 

• We can ask different questions 

• We can permutate questions 

• Each tree should lead to the same 
overall outcomes 
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DECISION TREE CLASSIFICATION 

• A simple AI decision tree creates a “decision” (leaf), and 
places weights against the data 

• After optimizing the weights by testing against the training 
set, it splits and creates more leaves based on probability 
of success 

• Each branch (path between leaves) has a maximum depth 

• After training, the path taken through the tree depends on 
the found weights 

• Highly random structure 

• Probability of successful classification varies from tree to 
tree 

• Make the tree too deep - overfit 

• Make the tree too shallow - underfit 
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RANDOM FOREST CLASSIFICATION 

• Take an ensemble of trees, and take an average 
classification 

• Linear average (mean) yields the mean accuracy  

• Non-linear averages (mode, RMS) can yield 
higher accuracy than the mean 

• If the standard deviation in accuracies is low 
p2 = 0.67 

p1 = 0.45 

p3 = 0.87 

p4 = 0.87 



OVERALL TRAINING FRAMEWORK 

Training shot 
list 

Grab NSTX 
data  

(BASH, IDL) 

Produce 
STFT 

processed 
data  

(Python) 

Pick 
frequency 

band (i.e. 1-
30 kHz) 

Plot data and 
perform human 
characterization  

(Python) 

Train AI 

(Python)  

Tweak AI 
parameters 

tweak parameters 

The AI operates as a multi-class classifier: 
• 4 separate classifiers (quiescent, fixed-freq, chirping, avalanching) 
• Each classifier is a random forest in scikit-learn 

• Maximise probability by changing no. of trees and branch depth 
(pruning) 

• Characterisation sits in a hierarchy (aval. > chirp. > fixed-freq. > quie.) 
 

Take highest prob.  Take hierarchal prob. 

[5] 

[5] http://xkcd.com/1838 



Grab NSTX 
data  

(BASH, IDL) 

Produce 
STFT 

processed 
data  

(Python) 

Pick 
frequency 

band (i.e. 1-
30 kHz) 

OVERALL CORRELATION FRAMEWORK 

Grab 
TRANSP data  

(BASH) 

Select 
TRANSP 

runs 

Produce 
weighted 
averages  

(Python) 

Mode 
windowing 

Shot list 

Correlation studies 
(Python) 



WEIGHTED AVERAGES 

• Chirping is a non-linear phenomenon 

• Requires wave-wave or wave-particle 
nonlinearity 

• Aim: correlate chirping with plasma parameters 

• These parameters can be spatially dependent 

• Solution: take weighted averages 

• Weighting is a normalised ‘window function’ 
which mimics mode structure 



BEAM ION BETA 

• Low freq. modes: 

• Avalanche at high % 

• TAEs: 

• Significantly less avalanching 

kink/tearing/fishbones 
(1-30 kHz) 

TAEs 
(50-200 kHz) 

more avalanching more quiescence Measure of fast ion resonant drive 

Generally at high beam ion beta, 
fishbones are very active while 

TAEs are less active 

quiescent – fixed freq. – chirping – avalanching 



BEAM TOROIDAL VELOCITY 

• Low freq. modes: 

• BTV not key factor for chirping 

• TAEs 

• More quiescent at similar values 
of BTV for high beam ion beta 

kink/tearing/fishbones 
(1-30 kHz) 

TAEs 
(50-200 kHz) 

invariant w.r.t BTV 
slight preference w.r.t BTV 

Measure of fast ion average velocity 

quiescent – fixed freq. – chirping – avalanching 



NORMALISED ION DENSITY GRADIENT 

• Low freq. modes: 

• More avalanching/chirping at 
high beam beta 

• TAEs: 

• More quiescence at high beam 
beta 

kink/tearing/fishbones 
(1-30 kHz) 

TAEs 
(50-200 kHz) 

more avalanching more quiescence Measure of MHD stability 

quiescent – fixed freq. – chirping – avalanching 



TEMPERATURE AND PRESSURE GRADIENTS 

• Both feature a window of 
increased quiescence 

• Modes here intermittently chirp 

• At high |ni’|, decreased 
quiescence 

• Modes here continuously chirp 

• At ni’ > -0.5, increased 
avalanching? 

• Profile inversion/flattening due 
to large scale 
chirping/avalanching? (see [6]) 

kink/tearing/fishbones 
(1-30 kHz) 

TAEs 
(50-200 kHz) 

Measure of MHD stability 

quiescent – fixed freq. – chirping – avalanching [6] Y. Todo et al. 2014 NF 54, 104012 



SUMMARY 

• Particle resonance can lead to fast ion loss 

• Machine learning offers a promising future for 
rapid characterisation of active modes in a 
tokamak 

• Preliminary results show interesting correlations 

• Mode character depends strongly on beam beta 

• |ni’| may indicate hysteresis  

Thanks for listening! 
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